
A COMPARISON OF DECLARATIVE AND HYBRID DECLARATIVE-PROCEDURAL MODELS
FOR ROVER OPERATIONS

Russell Knight (1), Gregg Rabideau (1), Matthew Lenda (1), and Pierre Maldague (1)

(1) Jet Propulsion Laboratory, California Institute of Technology
4800 Oak Grove Drive, Pasadena, CA 91109

<first name>.<last name>@jpl.nasa.gov

ABSTRACT

The MAPGEN [2] (Mixed-initiative Activity Plan
GENerator) planning system is a great example of a
hybrid procedural/declarative system where the
advantages of each are leveraged to produce an effective
planner/scheduler for Mars Exploration Rover tactical
planning. We explore the adaptation of the same domain
to an entirely declarative planning system (ASPEN [4]
Activity Scheduling and Planning ENvironment), and
demonstrate that, with some translation, much of the
procedural knowledge encoding is amenable to a
declarative knowledge encoding.

1. INTRODUCTION

Declarative domain representations facilitate describing
what a proper (or good, when optimizing) solution
looks like without having to describe all solutions. This
is very attractive for operators of extraterrestrial robotic
explorers (spacecraft and rovers) in that the generation
of a plan can be separated from the process of certifying
that the plan is safe to operate the robotic explorer. In
some cases, automated plan generation can take the
declarative description and aid in generating the plan as
well. This enables faster integration of new constraints
and shorter and more effective verification and
validation of such systems.

Procedural domain representations are, at the core,
executable code that is used to either certify a plan or to
generate a plan. Especially with respect to plan
generation, constraints that dictate why a plan is
constructed a certain way need never be explicitly
represented in the domain representation. Procedural
representations are usually very fast in terms of
execution, but can be difficult to modify when new
constraints are introduced and often require more
involved and costly verification and validation.

Many planning systems that deal with real problems are
hybrid systems, where both declarative and procedural
constructs are used in defining a domain. The
MAPGEN planning system is a great example of a
hybrid procedural/declarative system where the
advantages of each are leveraged to produce an effective
planner/scheduler for Mars Exploration Rover tactical
planning. The work we report here is an exploration of

using declarative domain representations for MER
tactical planning. The specific planner we adapt to is
ASPEN, but the general concept holds for many
existing automated planner/schedulers.

Our approach was to develop translators that translate
from the core languages used for adapting MAPGEN to
ASPEN modelling language. MAPGEN consists of
Europa and APGEN [3]. Europa is a constraint-based
planner/scheduler where domains are encoded using a
declarative model. APGEN is also constraint-based, i.e.,
it tracks constraints on resources and states and other
variables. For APGEN, domains are encoded in both
constraints and code snippets that execute according to a
forward sweep through the plan. Europa and APGEN
communicate to each other using proxy activities in
APGEN that represent constraints and/or tokens in
Europa.

The composition of a translator from Europa to ASPEN
was fairly straightforward, as both are declarative
planning systems, and the specific uses of Europa for
the MER domain matched ASPEN’s native encoding
fairly closely. Therefore, we will not delve into
translating the Europa modelling language into ASPEN
modelling language.

On the other hand, translating from APGEN to ASPEN
was considerably more involved. On the surface, the
types of activities and resources one encodes in APGEN
appear to match one-to-one to the activities, state
variables, and resources in ASPEN. But, when looking
into the definitions of how resources are profiled and
activities are expanded, one sees code snippets that
access various information available during planning for
the moment in time being planned to decide at the time
what the appropriate profile or expansion is. We see that
APGEN is actually a forward (in time) sweeping
discrete event simulator, where the model is composed
of code snippets that are artfully interleaved by the
engine to produce a plan/schedule. To address the issue
of embedded procedural models, we simulate
procedural code as a declarative series of task
expansions. Predominantly, we had three types of
procedural model to translate: loops, if-statements, and
code blocks. Loops and if-statements were handled
using controlled task expansion, and code blocks were

handled using constraint networks that maintained the
generation of results based on what the order of
execution would be for a procedural representation.

One great advantage with respect to performance for
MAPGEN is the use of APGEN’s GUI. This GUI is
written in C++ and Motif, and performs very well for
large plans. ASPEN’s GUI is written in Java, and starts
to slow down when working with large plans.

We have demonstrated the system on five shadow
operations days where we take the input to MAPGEN
and feed it into our system, plan the day, and then
compare the days.

2. ARCHITECTURE COMPARISON

MAPGEN takes as input an initial plan. The initial plan
is arrived at after the morning planning meeting. The
output from the morning planning meeting is the
Maestro plan. Maestro is a tool used to view images and
plan daily activities. The output of Maestro is read into
the skeleton plan generator, which puts a generic set of
supporting cast and other details into a skeleton plan.
This plan is subsequently edited using the constraint
editor to introduce temporal constraints not included in
the skeleton plan or Maestro outputs [1]. Fig. 1 shows
the flow graphically.

Maestro Plan

Skeleton Plan
Generator

Skeleton Plan

Constraint Editor

Initial Plan (AAF)

Figure 1. Arriving at an initial plan

The initial plan is in APGEN modelling language (AAF:
APGEN adaptation file). We use this as an input to both

MAPGEN and ASPEN. The other common inputs are
the final state from the previous day’s planning session
(and subsequent telemetry transmission) and the
configuration files for the underlying MMPAT
modelling system.

Fig. 2 illustrates the MAPGEN product flow. The
Europa Model, APGEN Model, and MMPAT
configuration files rarely change. The initial plan and
previous day’s final state change daily. Here we also see
that we may need to invoke the constraint editor during
the planning process, especially if we add new activities
or change our minds about the ordering of existing
activities.

Initial Plan (AAF)

Europa Model (DDL)

APGEN Model (AAF)

Previous day’s final
state (AAF)

MMPAT
configuration files

Constraint Editor

Current plan (AAF)

New plan (AAF)

Final Plan (AAF)

Final State (AAF)

Europa

MAPGEN

MMPAT

APGEN

Figure 2. MAPGEN plan generation

Fig. 3 illustrates the plan generation flow while using
ASPEN. We see that we use our translated set of models
are available and used by ASPEN and that the
modification of temporal constraints occurs within the
ASPEN tool itself.

Initial Plan (AAF)

ASPEN Model (AML)

Previous day’s final
state (AAF)

MMPAT
configuration files

Final Plan (AAF)

Final State (AAF)

ASPEN

MMPAT

Figure 3. ASPEN plan generation

3. APGEN to ASPEN Translation

Fundamentally, APGEN modeling looks very similar to
ASPEN modelling. Activities are modelled that levy
constraints and post effects on shared states and
resources.

APGEN ASPEN
activity activity
nonconsumable resource non_depletable resource
consumable resource depletable resource
state resource state_variable

Table 1. APGEN-ASPEN syntax comparison

Note that non-consumable/non-depletable resources
model a resource that is used over the interval and then
released, e.g., power. Consumable/depletable resources
model a resource that is used and not replenished
(unless explicitly replenished via some other activity),

e.g., energy. State resources/state variables model a
single state over time, e.g., whether or not a heater is on
or off. Henceforth, we shall refer to shared states and
resources as timelines. Timelines are profiled, and the
combined effects of various simultaneous activities are
reflected in the profile of each timeline. Timelines can
affect other timelines, allowing for a representation of
cause and effect through the shared states and resources.
Tab. 1 shows how similar the syntax is for activities and
shared states and resources.

For example, if we were to examine the
GENRIC_HTR_USE activity in the APGEN adaptation
(which represents using any of the heaters onboard the
rover), we would see different effects on resources
based on the heater_group parameter (which is an input
parameter for the activity). If the heater_group is
MOBILITY_LEFT_SIDE, then our effect on the
power_consumption is a function of
MOBILITY_LEFT_HTR_POWER (among others). If it
is MOBILITY_RIGHT_SIDE, then our effect on
power_consumption is a function of
MOBILITY_RIGHT_HTR_POWER (among others).

Similarly, with respect to sub-activities, if we were to
examine the HAZCAM_FRONT activity in the APGEN
adaptation (which represents using the forward hazard
camera), we would see that the number of
CAMERA_IMAGE_PAIR sub-activities generated is a
function of the camera_selection array that is passed in
on the creation of the activity.

The fundamental difference comes when modelling how
the timeline profiles are generated, what effects the
timelines have on other timelines, and what sub-
activities are required in support of existing activities.
To produce the resource profiles and to generate all sub-
activities, APGEN sweeps forward in simulated
schedule time. It creates activities, expands
decompositions, and applies resource and state
constraints in temporal order. Each clause is stitched
together into a single program that is executed and
dynamically generated as simulated time sweeps
forward. This forward-sweep nature allows for very
efficient modelling of resources and states and allows
for fast decomposition of parent activities into the
supporting cast of children, but it does come at a cost of
not being able to modify the past. This often can be
overcome by performing some initial modelling to get
the values you need when planning a pre-cursor activity
and then letting the subsequent activity play out as
needed. Of course, one could simply choose a value for
the past based on values that one has acquired for the
present and then re-run the simulation with the acquired
value. This is potentially linearly inefficient in the time
that is required to generate a plan, going from linear
time to quadratic (in the abstract sense), but the “time of
a plan” is the number of propagations one would need to

resolve the plan. For MER, multiple-propagation is not
necessary as all models were constructed such that a
single forward sweep was sufficient to correctly model
the profiling of resources and the expansion of activities
into sub-activities.

Our challenge then is to represent the resultant
reasoning embedded in the execution of these code
fragments using a declarative system. In the MER
adaptation of APGEN, there were fundamentally only
three different types of procedural code: 1) code blocks,
2) if-statements, and 3) loops. We explore each in more
detail, using both APGEN and ASPEN modelling
language.

Before continuing to the details of the translation, a
quick outline of APGEN and ASPEN modelling is in
order. Our examples will focus only on the generation
of sub-activities.

APGEN includes the ability to model activities.
Activities consist of attributes, parameters, resource
usage, and decompositions (among others). We will
focus on parameters and decompositions. Every activity
has the built-in parameters start (the start time of the
activity), finish (the end time of the activity), and span
(the duration of the activity). Other parameters can be
declared at the beginning of an activity. The
decomposition is a code snippet that usually describes
how to add activities to the schedule and modify the
span of the existing activity. The following example is
of a FOO_CHILD activity type, along with a FOO
activity that consists of two FOO_CHILD activities,
ordered back to back.

(1) activity type FOO_CHILD
(2) begin
(3) parameters
(4) A: local integer default to 0;
(5) end activity type FOO_CHILD
(6) activity type FOO
(7) begin
(8) nonexclusive_decomposition
(9) child: instance default to "generic";
(10) child1span: duration default to span;
(11) call(“FOO_CHILD”, child) at start;
(12) child1span = child.span;
(13) call(“FOO_CHILD”, child) at start

+child1span;
(14) span = child1span + child.span;
(15) end activity type FOO

Lines 1-5 declare the child activity and lines 6-14
declare the base activity. Note lines 9 through 13 are to
add sub-activities and to adjust the span of the activity.
It should be noted that the finish parameter is
automatically updated. The call statements add an
activity of the type listed in the first parameter to the
schedule.

Compare this to the same model encoded in ASPEN:
(1) activity FOO_CHILD {
(2) int A;
(3) }
(4) activity FOO {
(5) int child1span, child2start, child2span;
(6) dependencies =
(7) child2start<-sum(start_time, child1span),
(8) duration <-sum(child1span, child2span);
(9) decomposition =
(10) FOO_CHILD with (start_time->start_time,
(11) child1span<-duration),
(12) FOO_CHILD with (child2span<-duration);
(13) }

Similar to APGEN, ASPEN activities always include a
start_time, end_time, and duration parameter. ASPEN
does not use mathematic expressions, but instead uses
dependency assignments, e.g., x<-y indicates that x is
constrained to equal y (but not vice versa). Note that in
ASPEN we could forego the math and simply express a
temporal relationship between the child activities, but
our purpose here is to translate APGEN to ASPEN
directly. The dependencies statements describe how to
“hook up” the constraint network to various variables.
We don’t know when the values will be assigned, but
we do know that a change in one will cause a
propagation of the constraint network much like
changing the value of a cell in Excel. The with clauses
in the decomposition are also used to hook-up the
constraint network, but in this case we are hooking up
values in external activities. The direction of the arrow
tells us which direction the dependency (or equality
constraint, in this case) goes. This dictates the direction
of propagation. In this example, we would never change
the duration of a child activity from the parent, but
changing a child activity’s duration would result in a
change to the duration of the parent activity.

3.1. Code Blocks

Code blocks might seem trivial to convert to declarative
representations, but consider the following fragment of
procedural code (in standard APGEN, which has a c-
like syntax):

(1) A : integer;
(2) A = x;
(3) call(“FOO_CHILD”, A, child);
(4) A += y;
(5) call(“FOO_CHILD”, A, child);

Clearly, the following declarative representation would
fail:

(1) int A;
(2) decomposition =
(3) FOO_CHILD with (A->A),
(4) FOO_CHILD with (A->A);
(5) dependencies =
(6) A <- x,
(7) A <- sum(A, y);

The result of such an ill-advised adaptation would be
two sub-activities being generated with the same value
being passed to each child, along with the added
“feature” of having the value of A change continually
and somewhat randomly as the constraint network
propagates. Some systems would be able to detect that
this can never be resolved and mark any activity
introducing such a set of constraints as being faulty.

To address this, we clearly need to consider the value of
A as it evolves over time. Specifically, for each step in a
procedure where A changes, we need to keep track of
the “new” A in that context and build our network
accordingly. Thus, the correct declarative representation
of the procedure would be the following:

(1) int A_2, A_5;
(2) decomposition =
(3) FOO_CHILD with (A_2->A),
(4) FOO_CHILD with (A_5->A);
(5) dependencies =
(6) A_2 <- x,
(7) A_5 <- sum(A_2, y);

Now, should the value of x change, then the value of
A_2 would change, and propagate to A_5, and result in
a propagation down to both sub-activities of the
appropriate value. But, let us draw our attention what
happens when y changes. The value of A_2 is left
unaltered and only the value of A_5 changes. This gives
us an incremental capability to modify parameters in the
context of an executing block of code without having to
actually execute the block of code.

One challenge for this approach is faithfully
representing short-circuiting of evaluation of
components of Boolean expressions. Our translator does
not explicitly deal with short-circuiting except for
reporting warnings of where short-circuit structures
exist in the code. For the MER adaptation, this had no
impact on the correctness of the final adaptation. This is
due to the lack of reliance on avoiding side effects,
which is a testament to the overall high quality of the
design of the model.

Finally, blocks of code should be seen as modular,
copy-able extensions of code (if one thinks of executing
a block of code as copying it). If a code block occurs in
an IF statement or a loop, a more modular form of
representation is called for in the model. To address
this, we represent each code block as a separate activity.
This allows for multiple copies of the block to exist with
the same structure, representing different “executions”
of the code block. Thus, extending our example:

(1) activity Foo_code_block_1 {
(2) int x, y; //input parameters
(3) int A_2, A_5;
(4) decomposition =
(5) FOO_CHILD with (A_2->A),
(6) FOO_CHILD with (A_5->A);

(7) dependencies =
(8) A_2 <- x,
(9) A_5 <- sum(A_2, y);
(10) }

3.2. IF Statements

If-statements in APGEN come in the standard c-like
syntax:

(1) if(<Boolean expression>) <block if true> else
<block if false> ;

In ASPEN, we can easily code each block (both <block
if true> and <block if false>) as a code-block activity.
We use an enclosing activity for the if-statement using
disjunctive decompositions and forcing the selection of
which decomposition to use through a feature in
ASPEN called the decomposition index. The following
is an example of “if(a==1) <true_code_block> else
<false_code_block>;”.

(1) activity foo_if {
(2) int a;
(3) dependencies =
(4) decomposition_index<-if(eq(a,1),0,1);
(5) decompositions=
(6) (foo_if_true_code_block) or
(7) (foo_if_false_code_block);
(8) }

Note that the if-function behaves similarly to the if-
function in Excel. The Boolean eq-function returns true
when all arguments are equal. Disjunctive
decomposition indexing starts with 0 for the first
decomposition choice.

3.3. Loops

We might be tempted to believe that the same structure
that handles if-statements might be able to handle a loop
(and in general we would be correct), but the key
missing element for such a structure is the ability to
branch back to previous code. Our translation approach
is analogous to unrolling the loop into a sequence that
has a length that varies based on the loop criteria.

All loops in APGEN can be expressed in the following
c-like form:

(1) while(<Boolean expression>)<block>;
We again take advantage of the decomposition index
feature for our translation, but we use a recursion to the
same activity type to represent the loop, including the
changing of the variable used in the Boolean expression
that determines the termination criteria. So, in APGEN
we might have:

(1) a : integer default to 5;
(2) child: instance default to “generic”;
(3) while(a>0){
(4) call(“foo_child”, a, child);
(5) a--;
(6) }

The ASPEN equivalent being:
(1) activity foo_while {
(2) int a, a_5;
(3) dependencies =
(4) a_5<-sub(a,1),
(5) decomposition_index<-if(gt(a,0),0,1);
(6) decompositions=
(7) (foo_while with(a_5->a)
(8) foo_child with a->a) or
(9) (nop);
(10) }

The Boolean gt-function returns true if the first
argument is greater than the second argument. Note that
we do not include a block activity as the contents of the
block are usually included in the loop activity. Also note
the special nop-activity used where a decomposition
selection is empty.

4. COMPARISON

Since some of the inputs and outputs are the same from
ASPEN and APGEN (when adapted to MER), our
approach was to compare outputs. Not surprisingly, our
final adaptation showed little difference in outputs, with
the exception of the display of certain profiled
information from external power modelling system
MMPAT.

In APGEN, MMPAT is integrated tightly into the core
and APGEN renders the MMPAT timelines at a fidelity
that is adjustable within the model (this also goes to the
fidelity with which other APGEN entities generate
profiles for other non-MMPAT based timelines) called
MMPATfidelity, which for MER is set to between 9 and
12 minutes. APGEN interpolates values between these
intervals.

In contrast, ASPEN tracks the worst-case value for
these intervals and displays only that, making a kind of
stair-step timeline versus a nice, smooth display.

Fig. 4 shows the ASPEN GUI with an example of one
of the days that were planned using ASPEN. Fig. 5
shows the MAPGEN GUI of same day planned using
MAPGEN. Even though the images are quite small
here, it is easy to see the discritization that occurs when
displaying the power timelines.

Figure 4. ASPEN display of Sol 2594, MER B.

Figure 5. MAPGEN display of Sol 2594, MER B.

Another variance between ASPEN and MAPGEN was
that durations for sub-second events were rounded to
single second in ASPEN, leading to some small mis-
alignments in the output files. This was quite rare and
the sub-second durations in MAPGEN were
approximations that could be rounded up without
causing issues. Subsequent conversion techniques
should use ASPEN’s ability to model time at a higher
fidelity than 1 second to accommodate sub-second
events. ASPEN can model temporal intervals as small
as a nano-second.

Both ASPEN and MAPGEN allow for the display of
various time frames in the same user interface, so Mars
time (or MER A time, to be more specific) can be
displayed along with UTC or whatever time frame is
preferred by the user. More importantly, input files can
refer to these time frames and the internal time
representation can align and translate these properly.
This is particularly useful when aligning DSN
operations with rover and orbiter operations.

It should be noted, however, that the MAPGEN GUI is
much more responsive than the ASPEN GUI for
multiple-day plans when displaying all of the power
profiles. This is due in part to the fact that the
MAPGEN GUI is embedded Motif, which runs

extremely fast, and in part to the design of ASPEN’s
user interface.

An ASPEN instance starts as a server. The GUI is a java
application that connects to the server via a socket. The
GUI is responsible for synchronization with the server
and maintains a lightweight copy of the schedule
database. This allows for an arbitrary number of clients
to connect to an ASPEN instance. While this
architecture is particularly useful for distributing views
of the same plan/schedule and allowing for
contemporaneous modification, it is not really necessary
for the single-user case that MER represents, and the
overhead of copying and synchronizing the plan
database across the socket costs us in terms of
performance.

On the other hand, introducing temporal constraints
between activities in ASPEN is a bit more straight-
forward than with MAPGEN. In MAPGEN, a separate
tool, called the constraint editor, is invoked and
temporal constraints are introduced using the tool. In
ASPEN, temporal constraints can be added and deleted
directly through the user interface, leading to a more
fluid user experience. But, the generation of skeleton
plans by the skeleton plan generator that is in common
use nowadays obviates the need to edit the temporal
constraints very often, so this is not so much of a gain in
practice.

The research was carried out at the Jet Propulsion
Laboratory, California Institute of Technology, under a
contract with the National Aeronautics and Space
Administration. Copyright 2012 California Institute of
Technology. Government sponsorship acknowledged.

5. REFERENCES

[1] “Mars Exploration Rover project,” NASA/JPL
document NSS ISDC 2001 27/05/2001.

[2] Ai-Chang, M., Bresina, J., Charest, L., Chase, A.,
Chengjung Hsu, J., Jonsson, A., Kanefsky, B.,
Morris, P., Rajan, K., Yglesias, J., Chafin, B. G.,
Dias, W. C., and Maldague, P. F., “MAPGEN:
Mixed-Initiative Planning and Scheduling for the
Mars Exploration Rover Mission”, IEEE Intelligent
Systems, 2004.

[3] Maldague, P., Ko, A., Page, D., and Starbird, T.,
“APGEN: A multi-mission semi-automated
planning tool.” First International NASA Workshop
on Planning and Scheduling, Oxnard, CA, 1998.

[4] Rabideau, G., R. Knight, S. Chien, A. Fukunaga,
and A. Govindjee. “Iterative Repair Planning for
Spacecraft Operations using the ASPEN System”,
Proc. Intl. Symp. Of Artificial Intelligence,
Robotics and Automation for Space, 1999.

